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INTRODUCTION

By a change of variable, the classical Weierstrass approximation theorem
can be stated as follows.

THEOREM (Weierstrass). Suppose f is a real valued continuous functioll
011 10. CfJ), f(x) eIJ. x (j.J ;:;:, 0) has a finite limit at x = CfJ and c > 0. Then there
correspond real numbers co ..... C

II
such that

I

11

f(x) - \' cle
I j 0

iIJ.+.!IX I < ce ux x;;' 0.

Our main result. Theorem II (see Section 2). asserts that an analogue of
the above version of the Weierstrass theorem is obtained when the functions

e- ux are replaced by the principal solutions eu(x). The function eJ')' for
11 > QI!2. is defined as the solution of

u" = (q(x) +1l 1 )u, u(o) = L u( CfJ) = ° (
d'

u'(x)= d.~u(X)).

Principal solutions are discussed in [L p. 3551. We assume that q(x) is a

real valued continuous function on °(; x < CfJ and that sup i q(x)1 = Q < CfJ.

The existence of eu is guaranteed by Lemma 1.1. More precisely, our density
theorem asserts that an approximation

I'/(X) - " cle\+j(x) 1< ce uX

I ()
x;;,o.

where A= (u l + Q) 1/1, is possible for each real valued continuous f on 10, CfJ)

which is o(e- UX
) as x --> 00. We know of no other papers that investigate the
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DENSITY OF PRINCIPAL SOLUTIONS 227

density of the linear span of a class of principal solutions. The question of
completeness of eigenfunctions of Sturm-Liouville problems has been exten­
sively investigated, but this question is only remotely related to our problem.

As a major step in the proof of the density theorem. we obtain Theorem I.
which is a representation theorem for eli ; it asserts that eli can be represented
in the form

Y"e,,(x) = e-"x +r K(x. s) e liS ds
x

for a certain K which depends on q but not on fl (Y" is a positive constant).
Marcenko 12. Lemma 1.1. I I obtains a similar representation in a different
setting by clever use of an identity that frees K from the parameter fl. The
use of an analogous identity is a major step in our proof.

l. THE REPRESENTATION THEOREM

In this section we establish the existence and elementary properties of the
principal solutions eli in Lemma 1. I and we prove the representation theorem
for e". Theorem I.

LEMMA I. I. Let q(x) be a real valued continuous function on 0 ~ x < 00

such that Q = sup Iq(x)1 (x> 0) is finite. For each fl> Ql/2, the boundary
value problem

u" = (q + fl 2 )U, u(O)= 1, u( (0) = 0

has a unique solution, which we denote by e,,(x), 0 ~ x < 00. Furthermore. (i)
eJx-) > 0, (ii) e~(x) ~ O. and (iii) e,,(x) = O(e- rX

) as x---> 00 for each 0 < r <
(./12 _ Q)l/2.

The proof of the lemma will be based on the following two lemmas.

LEMMA 1.2. Suppose P(x) is a real valued continuous function on
o~ x < 00 such that P(x) >O. If u" = Pu, u(O) = 1, u/(O) = 1, then (i)
u'(x) > I. (ii) u(x) > I + x. (iii) J~ (l/u 2(x)) dx < 00 and (iv) u'(x) is
nondecreasing.

LEMMA 1.3. Let P, u be as in Lemma 1.2 and let uo(x) =
u(x) J.~) (l/u 2(t)) dt. Then (i) Uo is a solution of u" = Pu, (ii) uo(x) > 0, (iii)
u;)(x) ~ 0 and (iv) uo(x) ~ (1 + x)/u(x).

For Lemma 1.3, (i}-(iii) are easily verified. For (iv), first note that u(x) -
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lI(O) =ii~ lI'(t) dt,s;: xu'(x). since lI' IS nondecreasing. Thus. uo(x) ,s;: (lI(O)t
,m'(x))i': (l/lI 2)dt ,s;: (J +X)lI'(X)X (I/u')dt ,s;: (J +xH: (u '/u 2)dt =

(I + x)/u(x).
Now to prove Lemma 1.1 we let u and lIo be defined as above for P

q + .u 2. We define e,,(x) as (uo(O)) I lIo(X). It is easily shown that for each
0< r < Cu' Q)12. lI(x)? (It r) c"/2r -I- (r I) c "/2r. since q+-.u2 > r2

The lemma now follows from Lemma 1.3,

THEOREM I. Lct q. Q and e" be as in Lemma I. I. There exists a
function K(x. s) ll'hich sati,~fies the fol!oll'ing conditions,

(I) K(x. s) is real valued and continuous on O,s;: x. s < 00.

(2) K(x.s)=Ojbrx>s,

(3) For ,II QI2 and u continuous and Ole UX): (i) the integral u(xl
.I: K(x. s) lI(S) ds conl'ergcs absolutely.li)r each x'.;? O. (ii) I' is continuous.
(iii)supil'(x)ie"',s;:Csup, I) lI(x)!e"'.ll'hereu (.u 2 Q(2 andC=(1
IQ/2.uCu -I (u' Q)'2)1) I

(4) For ,u > Q12.

/"c,,(x) =, c ux +- J./ K(x. s) e '" ds.

where ;'u is a nonzero constant which depends on ,U.

If we combine (iii) and (iv) of the theorem. we get the following corollary.
which strengthens (iii) of Lemma 1.1.

COROLLARY 1.1. For.u > QU. eJ,) is Ole "X) as x -> 00. where u
(.ul.- Q)12,

Proof of Theorem 1. For any complex number .u. the Volterra integral
equation

u(x)=ae uX+beux +-f
x

(2,u) l(e ulX II_- e ul' lI)q(t)u(t)dt
o

has a unique solution which is also the unique solution of the initial value
problem

lIli = (q + ,u 2 )u. u(O) = a,. b. u'(O) = ,ua 1- ,lib.

From now on we let ,II > QI!2. Thus.

e,,(x)=aUe "X + b"eux +f" (2,u) I(eu" r) e "Ix ")q(t)e,,(r)dt. (1.1)
[)
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au + bu = L

-,liau + ,libu = e~(O).

229

Since the integral () e u1q(t) eu(t) dt converges absolutely, we can rewrite
Eq. (1.1) as

- (2,11)-1 r e- u1x Ilq(t) e,,(t) dt.
o

( 1.2)

The term in Eq. (1.2) that is a constant multiple of eUX must be 0 since all
other terms in the equation tend to 0 as x tends to 00. Thus,

bu = -f' (2J1r 1 e-U1q(t) eu(t) dt.
o

e,,(x) = aue ux - r (2,11)-1 e u1x liq(t) eu(t) dt.
o

Let K u denote the kernel

(1.3)

0< x, t < 00,

Ru the corresponding operator on functions, and II Ku II the operator norm for
the function space L ,I o. 00). It is known that for a general continuous kernel
K,

II KII = s~p fC IK(x. s)1 dx (s ;:? 0).

From this, Eq. (1.3) and the fact that leu(x)1 <1. we conclude that

x

(au) 'eu(x)=e ."X+ '\' (-It(Kute-ux,
" ,

(1.4 )

where the series converges in the form of L ,10, 00).

We will now obtain the kernel K of the theorem by showing that



230 JAMES D. STAFNEY

(K Ii )" I.' 'LI = ,I'; K,,(x, s) I.' u'ds for some K" (independent of ,u) and then
defining K as ~ (-I)" K" (n = I, 2,.,.). For n = 1. 2.....

(IS)

where the integration is over the set t i ~ 0, j = I ..... n. If we use the formula

,u "I.' uh = I'(n) I j' (s h)" I e iiI ds,
h

then the right side of Eg. (1.5) becomes

h ~ O. /1 = 1. 2, ....

2 "fll'(n) It.?IX tnl",.t,(s-lx--t"I+···+III/' Ie li'dSJ

X q(rl)'" q(r,,) dl l ... dl". (1.6)

We define K,,(x, s) as the kernel obtained by formally interchanging the
order of integration in (1.6); that is, we define K" as follows. For x ~ s,

KnCx, s) = (2"r(n» I r Is (Ix t"i + ... i t l ) I" I

7 X,I

where T\" is the set of n-tuples (rl .... ' I,,) such that (i) S~IX--I" ~

It" - I" _Ii + ... + II and (ii) t I ~ 0,... , t" ~ 0; and, for x > s. K,,(x, s) = 0.
We need the following properties of K".

LEMMA 104. (i) K,,(x, s) is continuous.

(ii) K,,(x, s) = 0 for x > s.

(iii) (KIi)"e IiX= x Kn(x,s)e Ii'ds.

Properties (i) and (ii) are clear from the definition of K". To prove (iii) we
note that since the integral in Eg. (1.5) is absolutely convergent and the
integrand of the inner integral in (1.6) is nonnegative, the integral in (1.6) is
also absolutely convergent. Thus, the order of integration in (1.6) can be
interchanged. This proves (iii).

The crude bound

IKn(x,s)I~(2"T(n» IQ"(S-X)" I (2s)", n = 1.2.... (1.7 )
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follows from the definition of K n when we note that for (1\ ,.... t n ) in T,.\.
s ~ I x - t; I for j = 1, 2,... , n. Thus. the series

Ci:

\' n_ (~I) Kn(x.s)
n I

(1.8 )

converges absolutely. We define K(x, s) as the sum of this series. The bound
(I. 7) also shows that the series converges locally uniformly; this, together
with (i) and (ii) of Lemma 1.4. establishes (I) and (2) of Theorem I. For (i)
and (i i) of (3). first consider the series

(~ n fJ
,;-::-\ (-I) x Kn(x,s)u(s)ds.

For M ~ x. the crude bound (1.7) shows that

( IKn(x, s) u(s)1 ds <en (' s2n-'e- "S ds.

This estimate shows that the integral

Fe K n(.,>:, s) u(s) ds
x

( 1.9)

(1.10)

converges absolutely and uniformly for x in any finite interval as the upper
limit of the integral --Hn. This and the fact that K n is continuous shows that
(1.10) is continuous. Let KQ,n denote K n in the case q=.Q (q is fixed
throughout this proof). Clearly, IKn(x, s)1 <KQ,Ax, s). If we apply
Lemma 1.4(iii) to KQ,n and then bound the left hand side of Lemma 1.4(iii)
by estimating the integral (corresponding to q =. Q) in Eq. (1.5) as an
iterated integral, we obtain

re
KQ.n(x, s) e-'" ds <(Q/f.l2)n.

x

Thus, the absolute value of the nth term in the series (1.9) is dominated by
(Q/f.l2)n II u II", where, for convenience in the remainder of the proof, II u II"
denotes sup Iu(x) e"xl (x ~ 0) for any real valued continuous function u on
10. CIJ). Since Q/f.l2 < 1, the series (1.9) converges uniformly; and, since the
nth term of the series is continuous, the sum of the series is continuous. Since

00

< \' KQ,n(x,s)lu(s)1
n ,

for m = 1,2,...
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and the latter has a finite integral over lx, (0) by what we showed above,
together with the Montone Convergence theorem. we conclude from the
Dominated Convergence theorem that the series in (1.9) is l"(x) =1'; K(x. s)
u(s)ds. We have now proved parts (i) and (ii) of (3),

Note that the estimates above only show that l'(x)l~n'(Q/.u2)")lluiiu'

which is not good enough for (iii) of (3). We will now prove (iii). Let H" and
Hu denote K" and Ku ' respectively. for the case q == "Q. If we note that
IK,,(x. s)! ~ ( I)" H,,(x. s) and apply Lemma 1.4(iii), we obtain the following
inequalities:

I,' _\' fK(x, s)i lu(s)1 ds ~
~ ,\ J .,

IK,,(x, S)i ju(s)1 ds

~ (\' (.I)"!' H,,(x.s)e uldS) Iluliu (1.11)
II I I.

~ (e u'+ \' ( 1)"(R,,)"e UI) Iluliu'
11 )

From (1.4), using the case q == -Q, we have

e .u'+ \' (--1)"(Rul"e u'=(au) Ie (1\

n-:::,-!

(1.12 )

where the series converges and the identity holds in the norm of L 110, (0)

(au corresponds to q == -Q). However, since -Ru has a positive kernel. so
does (-Ru )". Thus, the series in (1.l2) is pointwise increasing. We can now
conclude that (1.12) holds a.e. Combining (l.ll) and (1.12), we obtain the
inequality in (3)(iii) of Theorem I. Using the formula (1.3) for au we obtain

We have proved (iii).
To prove (4) we first note that in (1.4) au *°and that (1.4) holds as an

identity in the space L I [0, (0). However, we know that eu is continuous on
[0, (0). We also know that

(Kul"e u'=fK,,(x,s)e ulds,
.,

( I. 13 )

the integral of the right hand side of (1.13) is continuous (the proof follows
(1.10)), and the series on the right hand side of (1.4) converges uniformly
(because of the inequality following (1.10)). Thus, we conclude that (1.4)
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holds as an equality between numbers for each x. To complete the proof of

(4) it suffices to show that

e Ii't \, (-I)"ff K,Jx,sje li\ds=(I+K)e I"
n I x

for each x:;' O. For a given x. we know that the sequence

(1.14 )

til

\' (-I)" K,,(x. s) e- Ii',
" 1

m= 1,2..... ( 1.15 )

converges pointwise to K(x. s) e-- li \ by the definition of K. However, the

inequality following (1.10) shows that the sequence (1.15) has a dominating
function in L Ilx. (0). Thus. (1.14) holds for each x by the Lebesgue
Dominated Convergence theorem.

2. THE DENSITY THEOREM

In this section we prove the following density theorem.

THEOREM II. Let q. Q and eli be as in Lemma 1.1. Given that /1 > Q 1i2./
is a real valued continuous function on 10. 00 )J(x) = o(e - Ii') as x -> 00. and
/' > 0, there correspond real numbers co. c 1 ••••• c" such that

I
/(X) - \' c;e\tj(x) I <: c;e ':'.

j 0

x:;' O.

Nole. We have already pointed out in Corollary 1.1 that each e\ _j IS

O(e Ii').

Proof We assume throughout that /1 > QI!2. For each pair of real

numbers (a. b), 0 ~ a <: b <: 00. we define a corresponding function II' as
follows: 11'(1) = I. 0 <I ~ a; wet) = O. t:;' b; on a ~ I <b. wet) is linear and
w(a) = I, web) = O. Let K correspond to q as in Theorem 1. We define the
kernels K". by: K.,,(x, t) = K(x, t) wet). In the first part of the proof IV is
arbitrary; a particular choice of w will be made later. For convenience, we
will let Eli (/1:;' 0) denote the space of real valued continuous functions/(x)
on 0 ~ x <: 00 for which

sup 1/(x)1 eli' (x:;'O)
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is finite and we let ilfL denote this sup. For any kernel function Klx. s) we
let K denote a corresponding operator on a function space.

Before continuing with the proof of the theorem. we will establish three
lemmas.

LEMMA 2.1. K" is a bounded linear operator on E u '

LEMMA 2.2. As an operator on Eu' I +K". has a bounded inverse.

To prove Lemma 2.1. take fJ > QI: and fE E u ' Clearly K,.1 is a
continuous real valued function and K"J= K(I\/). Let A= ('/12 +Q)u. Note
that;, >fl. For x~b.

i I\'lx) flx)1 ~ Ilfil.. e U.\ ~ IlfL e\xeU

and. for x > b. I\'(x) f(x) = O. Thus.

Hence.

,uJh.

where C corresponds to A and Q as in Theorem I. Since K is clearly linear.
we have proved Lemma 2.1.

To prove Lemma 2.2, let IE Eu ' Using the usual estimates for Volterra
type integral operators, we obtain

I(K,,)" I(x)i ~ (lin!) M"(b -- x)" ilfil u '

where M = sup IK(x, t)1 (0 ~ x ~ t ~ b). In particular.

o~x ~ b.

I(K,,)" I(x)1 ~ (1In!)(Mb)" Ilfliu eU/Je ux

Hence. corresponding to the function space Eu ' the operator norm

This shows that the Neumann expansion L;~ o(-K,J" converges in the
operator norm; and, hence, it converges to the inverse of I + R. So
Lemma 2.2 is proved.

LEMMA 2.3. Given that I is a real valued continuous function on 10, (0).

I(x) = o(e- UX
) as x --+ 00. and {; > O. there corresponds a w (that is. a choice

oIa, b) such that 11(1 - w)gllu < c. where g is the solution oII= (I + K,,)g.

Proof We first note that (I w) g = 0 for 0 ~ x ~ a. Choose r > 0 so
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that If(x)1 < De-""', x> r. This and the fact that (1 - w) g = ffor b ~ x show
that

x> max(b, r).

We must now estimate (1 - w) g for a ~ x ~ b. But,

ex

g(x) = f(x) + \. (-K,Y f(x).
nc 1

Using the same argument as above, we obtain

a ~x ~ b,

where B = sup If(x)1 (a ~ x ~ b) and M is the same as above. Thus,

x

\. I(-Kwt f(x)1 ~ e'ulb-a)De-«G
n=l

If we first choose b > r, then choose a so that r ~ a and (M + fJ)(b - a) ~ 1
(recall that M depends on b but not a), then combine the above estimates we
obtain

This completes the proof.
We now continue with the proof of Theorem II. Suppose/, fJ and e satisfy

the hypothesis. Let A= (fJ2 + Q)1I2. For any choice of w, there is a g in E"
such that

f = g +Kw g = (1 - w) g + (1 +K) wg.

By Lemma 2.3 we can choose w so that

11(1 - w) gil" < D.

(2.1 )

(2.2)

Since wg = o(e- Ax
) as x ---> 00, by the Weierstrass theorem, there are real

numbers bo,b1,...,bn such that

where h(x) = L bje-lHj)X (j = 0,... , n). By Theorem I,

(j = 0,... , n),

640/JO/.16
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where ci = biy\ +.i and

JAMES D. STAFNEY

II (I + K)( wg - h)llu < f:c' (2.3 )

where C depends only on 11. The conclusion of the theorem now follows by
combining (2.1), (2.2) and (2.3).

Remark 2.4. The Weierstrass theorem and Theorem II above show that
forll>Q Ii2 and A=(1l2 +Q)Ii2, the sets SI=je-(u+))x:j=0,1.2,00.f and

S 2 = IC\ +): j = 0, 1,00, f both have a dense linear span in X 0' the real valued
continuous functions which are o(e UX). However, these sets may be quite
independent. For example, we can show the following: Suppose that in
addition to the assumptions of Theorem II, q also satisfies Q = I, q(x) = °
on i < x < ~ and q(x) = I for x > 2. Then only the zero function is common
to the linear span of both S I and S 2' In fact, one can show that

(2.4 )

where 11(111 <112 < ... and A(A I <A2 < ..., is possible only if all coef­
ficients a) and bk are zero. If we differentiate (2.4) 2m times near x = I
(where q =0), we obtain

'" a'(-Ilym e "i
X = '" b (A )2m e (x)_.1.1 _ k k '\k (2.5 )

for x ner I and for m = I, 2'00' . Since we may assume all coefficients G j and
bk are *0 and since e,/I) * ° (see Lemma 1.1), we can conclude, in
particular, that III = AI' 112 = A2'.00. On the other hand, C'k(X) is a positive
multiple of exp(-(l + AD I12x) on 2 < x < 00. Therefore, by considering
growth rates as x --> +00 for both sides of (2.4), we conclude that III =

(1 + A~)Ii2; this and III = Al is impossible.
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